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Abstract
Over the last ten years the ‘fixed-node approximation’, well known in the
literature, has been widely used for a numerical treatment of thermodynamic
properties of strongly correlated Fermi systems. Results of the direct
path integral Monte Carlo simulation performed here show that the ‘fixed-
node approximation’ describes the thermodynamic properties of the strongly
coupling fermions rather well at ‘weak and moderate’ degeneracy. To
analyse the reasons for the increasing difference between the ‘fixed-
node approximation’ and the results of direct path integral Monte Carlo
simulations for highly degenerate fermions, the correctness of the ‘fixed-
node approximation’ for ideal Fermi systems has been analysed by analytical
methods. A rigorous proof has been given of the fact that the exact Fermi
function with index 5

2 describing the logarithm of the grand partition function of
ideal fermions cannot be reproduced in the ‘fixed-node approximation’, which
means that the ‘fixed-node approximation’ does not give the correct ideal Fermi
gas limit.

PACS numbers: 0510L, 0530, 5225K, 5265

1. Introduction

Theoretical studies of strongly interacting fermions are currently of great interest in many
different fields of physics, including the physics of low temperatures, solid state and
condensed matter physics, plasma theory, astrophysics and so on. The most interesting
physical phenomena in such systems are the phase transitions in fermi liquids, metallic and
superconducting states, particle bound states and so on [1–6].

Over the last few years significant progress has been observed in studies of the
thermodynamic properties of strongly correlated degenerate systems at non-zero temperatures,
which is mainly conditioned by the application of mathematical simulations [3, 4, 7–10]. The
reason for this success is the possibility of an explicit representation of the low-temperature
density matrix and partition function in the form of a finite-dimensional approximation of the
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Wiener path integrals [11] without any preliminary physical approximations, which require
the physical parameters to be small. Different Monte Carlo methods have been developed and
used for calculations of the obtained path integral representations [7–9].

The main difficulty for path integral Monte Carlo studies (PIMC) of Fermi systems is
the requirement of antisymmetrization of the density matrix in the partition function [11]. As
a result of the antisymmetrization all thermodynamic quantities are presented as the sum of
alternating sign terms related to all permutations of particles. So the thermodynamic quantities
are equal to the small difference of two large numbers, which are the sums of positive and
negative terms. The numerical calculation in this case is severely hampered. The given
difficulty is known in the literature as the ‘sign problem’. To overcome the ‘sign problem’
some approaches have been developed, among which the ‘fixed-node approximation’ [12–15]
is widely known.

The main idea of the ‘fixed-node approximation’ consists in introducing an additional
functional called the ‘trial antisymmetric density matrix’, which is used to reduce the domain
of integration in the integral representation of the partition function. The new domain of
integration is bounded by the positive domain of the ‘trial density matrix’. This transformation
results in the reduction of the sum over all permutations to the reduced sum of positive terms
related to the even permutations. This transformation of the partition function is called the
‘fixed-node approximation’. The ‘trial density matrix’ is chosen in the form of a density
matrix of the ideal fermions or to improve the accuracy of the approximation in the more
complicated form [15]. The background for this transformation is the statement that with
an appropriate choice of the ‘trial density matrix’ the properties of the Fermi system can
be described exactly [12–14]. The Monte Carlo methods developed for calculations in the
‘fixed-node approximation’ are known as the ‘restricted path integral Monte Carlo simulation’
(RPIMC).

An alternative approach for studies of Fermi systems without preliminary approximations
and transformations is known in the literature as the ‘direct path integral Monte Carlo
simulation’ (DPIMC) [10, 16–20]. In this approach the sum over all permutations is represented
identically as a determinant, which can be calculated by the direct methods of linear
algebra. The accuracy of this approach depends only on the errors of the finite-dimensional
approximations of the path integrals and can be improved systematically.

A comparison of the numerical results for thermodynamic properties of a dense hydrogen
plasma obtained by these two approaches (this work and [21]) has demonstrated rather good
agreement for weak and moderate degeneracy. However, the difference obtained increases
systematically with the growth of the degeneracy for large density and lower temperature.

The purpose of this work is the consideration of the reasons for this systematic difference.
The equation of state of ideal fermions has been considered using the analytical methods
developed by Ruelle [22, 23]. It has been rigorously proved that any modification of the domain
of integration in the partition function as well as a reduction of the sum over permutations results
in replacing the exact Fermi function with index 5

2 describing fermions in a grand canonical
ensemble by another function. An analogous replacement is valid in a canonical ensemble. Let
us note, nevertheless, that the performed calculations have shown that the difference between
RPIMC and DPIMC in the equations of state for a dense hydrogen plasma is reasonably small
at weak and moderate degeneracy. For other fermi systems further investigations are required.

2. Path integrals and the ‘fixed-node approximation’

Let us consider the main ideas of the path integral representation of thermodynamic quantities
[11]. As is known the thermodynamic quantities are equal to the appropriate derivatives
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of the logarithm of the partition function QN = Tr
[
ρβ

]
. Here ρβ is the low-temperature

density matrix of a quantum system. The quantum statistical mechanics of the system may be
incorporated via Feynman’s path integral formulation, which expresses the low-temperature
density matrix of the system in terms of its high-temperature density matrix ρτ (Trotter
formula),

ρβ = e−βĤ = (
e−τĤ )M

τ = β/M.

Once the coordinate representation of the density matrix is known, the thermodynamic quantity
or average value quantum operator are computed as

〈Ô〉 ≡ Tr[Ôρβ]

QN

=
∫
�

dR dR1 · · · dRM−1 ∑
P (−1)κP

〈
R|Ôρτ |R1

〉〈
R1|ρτ |R2

〉 · · · 〈RM−1|ρτ |PR
〉∫

�
dR dR1 · · · dRM−1

∑
P (−1)κP

〈
R|ρτ |R1

〉〈
R1|ρτ |R2

〉 · · · 〈RM−1|ρτ |PR
〉

where R = {R1, R2, . . . , RN } and R(l) = {R(l)
1 , R

(l)
2 , . . . , R

(l)
N } are the coordinates of all

particles (l = 1, . . . ,M − 1). The sum is taken over all permutations with odd permutations
yielding a negative contribution. The negative sign is problematic for Monte Carlo methods and
is eliminated using the ‘fixed-node approximation’ [12–14]. In this approximate formulation,
the domain of integration is limited to the positive domain of a ‘trial density matrix’, and
permutations are restricted to even exchange cycles. The observable expression then becomes

〈Ô〉FNA =
∑

P +

∫
�P+

dR dR1 · · · dRM−1
〈
R|Ôρτ |R1

〉〈
R1|ρτ |R2

〉 · · · 〈RM−1|ρτ |P +R
〉

∑
P +

∫
�P+

dR dR1 · · · dRM−1
〈
R|ρτ |R1

〉〈
R1|ρτ |R2

〉 · · · 〈RM−1|ρτ |P +R
〉

where P + corresponds to positive permutations and�P + is the modified domain of integration.
The ‘trial density matrix’ in [12–15] was chosen as the density matrix of ideal fermions or the
variational density matrix taking interactions into account.

It is of interest to derive the cluster and virial expansions for ideal fermions in the ‘fixed-
node approximation’ and to compare them with similar exact expansions. Most convenient
for this purpose, apparently, is the algebraic approach developed by Ruelle [22, 23].

3. Basic expressions

As was mentioned above the exact partition function of ideal fermions has the form:

Tr(ρβ) = N !−1QN = N !−1
∫

· · ·
∫
�

∑
P

(−1)κP ρ((q)N , (Pq)N) d(q)N dR(1) · · · dR(M−1)

(−1)κP ≡ ±1

where ρ((q)N, (Pq)N) ≡ ∏N
k=1 ρk,Pk and ρk,Pk = ρ0(qk, R

(1)
k )ρ0(R

(1)
k , R

(2)
k ) · · ·

ρ0
(
R
(M−1)
k , qPk

)
, (q)N = {q1, . . . , qN }, (P q)N = {qP 1, . . . , qPN }. Here the passage to the

limit of M → ∞ results in the integral over the Wiener measure. Then the partition function
in a grand canonical ensemble is equal to

�(z) =
∞∑
N=1

zN
QN

N !
. (1)
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The analogous expressions in the ‘fixed-node approximation’ look like

Tr(ρβ)+ = N !−1Q+
N = N !−1

∑
P +

∫
· · ·

∫
�

ρ̃((q)N , (P
+q)N) d(q)N dR(1) · · · dR(M−1)

(−1)κP
+ ≡ 1.

Here χN(P +) = χ
[
(q)N , R

(1), R(2)), . . . , R(M−1), (P +q)N
]

is the smoothed or discontinuous
characteristic function of the domain �P + (χ is equal to one inside the domain, where the
‘trial density matrix’ is positive and is equal to zero otherwise) and ρ̃((q)N , (P

+q)N) ≡
χN(P

+)
∏N

k=1 ρk,P +k . So, in the ‘fixed-node approximation’ the passage to the limit ofM → ∞
results in the integral over the modified Wiener measure. Then

�FNA(z) =
∞∑
N=1

zN
Q+

N

N !
. (2)

As is known [24] any permutation can be split into a composition of several cyclic permutations,
so we are going to present the sum over all permutations as the sum over cyclic permutations.
For example, for one, two and three fermions we have

|ρ11| =
C1

1︷︸︸︷
ρ̄11 = ρ̄(C1

1)∣∣∣∣∣ ρ11 ρ12

ρ21 ρ22

∣∣∣∣∣ =
C1

1︷︸︸︷
ρ11

C2
1︷︸︸︷

ρ22 −
C1

2︷ ︸︸ ︷
ρ12ρ21 = ρ̄(C1

2) + ρ̄(C1
1)ρ̄(C

2
1 )

∣∣∣∣∣∣∣
ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33

∣∣∣∣∣∣∣ =
C1

1︷︸︸︷
ρ11

C2
1︷︸︸︷

ρ22

C3
1︷︸︸︷

ρ33 +

C̃1
3︷ ︸︸ ︷

ρ12ρ23ρ31 +

C̃2
3︷ ︸︸ ︷

ρ13ρ32ρ21

−
C1

1︷︸︸︷
ρ22

C1
2︷ ︸︸ ︷

ρ13ρ31 −
C2

1︷︸︸︷
ρ11

C2
2︷ ︸︸ ︷

ρ23ρ32 −
C3

1︷︸︸︷
ρ33

C3
2︷ ︸︸ ︷

ρ12ρ21

= ρ̄(C3)︸ ︷︷ ︸
two terms

+�ρ̄(C1)ρ̄(C2)︸ ︷︷ ︸
three terms

+ ρ̄(C1)ρ̄(C1)ρ̄(C1)︸ ︷︷ ︸
one term

.

Here � means all renumbering, ρ̄C1 = ρi1,i1 , and for ν > 1 Cν means ordered (i1 < i2 <

· · · < iν) cyclic permutation of length ν and ρ̄Ci
ν
(i1, i2, . . . , iν) is the sum of the contributions

of all cyclic permutations C̃i
ν of length ν related to Cν :

ρ̄Cν
(i1, i2, . . . , iν) ≡ ρ̄(Cν) =

∑
C̃i
ν

(−1)ν+1ρi1,i2 , ρi2,i3 , . . . , ρiν ,i1 =
∑
C̃i
ν

ρ(C̃i
ν).

Here the sum over C̃i
ν contains ν!/ν terms. For example, for ν = 2, 3 we have ρ̄(C2) =

ρi1i2ρi2i1 , i1, i2 ∈ C2, and ρ̄(C3) = ρi1i2ρi2i3ρi3i1 + ρi1i3ρi3i2ρi2i1 , where i1, i2, i3 ∈ C3.
In the ‘fixed-node approximation’ given above expressions have the following form

(underlined terms are not taken into account as the related characteristic functions are equal to
zero for odd permutations):

|ρ11|+ = ρ11 = ρ(C̃1
1)∣∣∣∣∣ ρ11 ρ12

ρ21 ρ22

∣∣∣∣∣
+

= χ2(C̃
1
1 C̃

2
1 )ρ(C̃

1
1)ρ(C̃

2
1 ) + χ2(C̃

1
2)ρ(C̃

1
2)
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ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33

∣∣∣∣∣∣∣
+

= χ3(C̃
1
1 C̃

2
1 C̃

3
1)

C̃1
1︷︸︸︷

ρ11

C̃2
1︷︸︸︷

ρ22

C̃3
1︷︸︸︷

ρ33 +χ3(C̃
1
3)

C̃1
3︷ ︸︸ ︷

ρ12ρ23ρ31 +χ3(C̃
2
3 )

C̃2
3︷ ︸︸ ︷

ρ13ρ32ρ21

−χ3(C̃
1
1 C̃

1
2)

C̃1
1︷︸︸︷

ρ22

C̃1
2︷ ︸︸ ︷

ρ13ρ31 − χ3(C̃
2
1 C̃

2
2 )

C̃2
1︷︸︸︷

ρ11

C̃2
2︷ ︸︸ ︷

ρ23ρ32 − χ3(C̃
3
1 C̃

3
2)

C̃3
1︷︸︸︷

ρ33

C̃3
2︷ ︸︸ ︷

ρ12ρ21

=
∑

χ3(C̃3)ρ(C̃3) +
∑

χ3(C̃1C̃2)ρ(C̃1)ρ(C̃2)

+χ3(C̃
1
1 C̃

2
1 C̃

3
1)ρ(C̃

1
1)ρ(C̃

2
1 )ρ(C̃

3
1).

4. Algebraic approach

Let us consider the main ideas of the algebraic approach, developed by Ruelle [22, 23] to
simplify the derivations of cluster expansions. Let us define a linear vector space A of infinite
sequences of integrable functions,

�� = (�(q)N)N�0 .

Let us remark that the zero component �0 of a vector �� is a constant. It is also convenient to
use the following notation:

�(q)N = �(Q) = �(q1, q2, . . . , qN) = �(1, 2, . . . , N).

Let us define the product of two vectors �ϑ, �ω ∈ A by the following definition:

�ϑ × �ω = �� ⇒




ϑ(0)

ϑ(1)

ϑ(12)

ϑ(123)

...




×




ω(0)

ω(1)

ω(12)

ω(123)

...




=




ϑ(0)ω(0) = �(0)

ϑ(0)ω(1) + ϑ(1)ω(0) = �(1)

ϑ(0)ω(12) + ϑ(1)ω(2)

+ϑ(2)ω(1) + ϑ(12)ω(0) = �(12)

ϑ(0)ω(123) +
∑

ϑ()1ω()2

+
∑

ϑ()2ω()1 + ϑ(123)ω(0) = �(123)

...




.

For an arbitrary component of a vector �� we have

�(1 . . . N) = �(q)N =
N∑
k=0

∑
Q′

k

ϑ(Q′
k)ω((q)N −Q′

k).

Here the summation extends over all ordered subsequences, Q′
k = (i1 < i2 < · · · < ik} ={

qi1qi2 , . . . , qik
}

of the lengths k (k = 0, 1, 2, . . . , N) of the sequence 1, 2, . . . , N and contains
N !/k!(N − k)! terms for each k.

Obviously, due to this product the vector space A is a commutative algebra with unit
element �1 = {1(0), 0, 0, . . .}. It can be readily checked that the homomorphism of algebra A
in an algebra of formal power series:

if �ϑ ∈ A ⇒ ϑ(z) =
∞∑
N=0

zN
ϑN

N !
ϑN =

∫
· · ·

∫
d(q)N ϑ(1 . . . N)

if �� = �ϑ ∗ �ω ⇒ �(z) = ϑ(z)ω(z).
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Elements of algebra A with elements u0 equal to zero form the closed subspace A+, being
an ideal in A:

�u ∈ A+ if u(0) = 0 �u = {0, u(1), u(12), . . . , u(1 . . . N), . . .}
if �u ∈ A+ ⇒ u ∗ u ∈ A+ A+ ⊂ A.

The power-series expansion of the exponential yields a well defined mapping �# of A+

onto �1 + A+. If

�u


0

u(1)

u(12)

u(123)

u(1234)

...




then

�#(�u) = �1 + �u +
1

2!
�u× �u

�#(�u) =




1

0

0

0

0

0

...




+




0

u(1)

u(12)

u(123)

u(1234)

u(12345)

...




+




0

0

u(1)u(2)∑
u()1u()2∑
u()1u()3 +

∑
u()2u()2∑

u()1u()4 +
∑

u()2u()3

...




+
1

3!
�u× �u× �u +

1

4!
�u× �u× �u× �u + · · ·

+




0

0

0

u(1)u(2)u(3)∑
u()1u()1u()2∑
u()1u()1u()3 +

∑
u()1u()2u()2

...




+




0

0

0

0

u(1)u(2)u(3)u(4)∑
u()1u()1u()1u()2

...




+ · · · .

Let us note that the components of a vector �#(�u) are the finite sums of all possible products of
components of a vector �u related to all possible renumberings [22, 23].
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5. Cluster expansions

Let us introduce an unknown vector �u by the relation �1 + �� = �#(�u), where the vector �� is a
vector with components equal to the determinants of density matrices of ideal fermions, then
we have

�1 + �� = �#(�u) = �1 + �u +
�u× �u

2!
+

�u× �u× �u
3!

+ · · · .

The components of this vector are equal to

u(0) = 0 = �(0)

u(1) = ρ̄0(C1) = �(1)

u(12) + u(1)u(2) = ρ̄0(C2) + ρ̄0(C1)ρ̄(C1) = �(12)

u(123) +
∑

u()1u()2 + u(1)u(2)u(3) = ρ̄0(C3) +
∑

ρ̄0(C1)ρ̄(C2)

+ρ̄0(C1)ρ̄0(C1)ρ̄0(C1) = �(123)

u(1234) +
∑

u()1u()3 +
∑

u()2u()2 +
∑

u()1u()1u()2 + u(1)u(2)u(3)u(4)

= �(1234)

= ρ̄0(C4) +
∑

ρ̄0(C1)ρ̄0(C3) +
∑

ρ̄0(C2)ρ̄0(C2)

+
∑

ρ̄0(C1)ρ̄0(C1)ρ̄0(C2) + ρ̄0(C1)ρ̄0(C1)ρ̄0(C1)ρ̄0(C1)

...

These relations can be considered as a system of algebraic equations defining the
components of an unknown vector �u. The inverse mapping �#−1 gives us a unique solution of
this system of algebraic equations,

�u = �#−1(�1 + ��) = �� −
�� × ��

2
+

�� × �� × ��
3

− · · · .

For components of this expression we have

u(0) = 0

u(1) = �(1) = ρ̄0(C1)

u(12) = �(12)− u(1)u(2) = ρ̄0(C2)

u(123) = �(123)−
∑

u()1u()2 − u()1u()1u()1 = ρ̄(C3)

u(1234) = �(1234)−
∑

u()1u()3 −
∑

u()2u()2 −
∑

u()1u()1u()2

−u(1)u(2)u(3)u(4) = ρ̄(C4)

...

Let us note that in the ‘fixed-node approximation’ contributions of odd permutations are
equal to zero, therefore in the analogous relations written below the underlined terms are not
taken into account:

�# �̃u = �1 + �̃
�.
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The component-wise form of this expression has the form:

ũ(0) = 0 = �̃(0)

ũ(1) = ρ(C̃1) = �̃(1)

ũ(12) + ũ(1)ũ(2) = χ2(C̃2)ρ(C̃2) + χ2(C̃1C̃1)ρ(C̃1)ρ(C̃1) = �̃(12)

ũ(123) +
∑

ũ()1ũ()2 + ũ(1)ũ(2)ũ(3) = �χ3(C̃3)ρ(C̃3) + �χ3(C̃1C̃2)ρ(C̃1)ρ(C̃2)

+χ3(C̃1C̃1C̃1)ρ(C̃1)ρ(C̃1)ρ(C̃1)

= �̃(123)

ũ(1234) +
∑

ũ()1ũ()3 +
∑

ũ()2ũ()2 +
∑

ũ()1ũ()1ũ()2 + ũ(1)ũ(2)ũ(3)ũ(4) = �̃(1234)

= �χ4(C̃4)ρ(C̃4) +
∑

χ4(C̃1C̃3)ρ(C̃1)ρ(C̃3) +
∑

χ4(C̃2C̃2)ρ(C̃2)ρ(C̃2)

+
∑

χ4(C̃1C̃1C̃2)ρ(C̃1)ρ(C̃1)ρ(C̃2)

+χ4(C̃1C̃1C̃1C̃1)ρ(C̃1)ρ(C̃1)ρ(C̃1)ρ(C̃1).

(3)

The unique vector �̃u is defined by the inverse mapping �#−1:

�̃u = �#−1(�1 + �̃
�).

Therefore, the vector �̃u in the ‘fixed-node approximation’ does not coincide with the initial
exact vector �u. The component-wise form of �̃u is

ũ(0) = �̃(0) = 0

ũ(1) = �̃(1) = ρ(C̃1)

ũ(12) = �̃(12)− ũ(1)ũ(2) = (
χ2(C̃1C̃1)− 1

)
ρ(C̃1)ρ(C̃1)

ũ(123) = �̃(123)−
∑

ũ()1ũ()2 − ũ(1)ũ(2)ũ(3)

=
∑

χ3(C̃3)ρ(C̃3)−
∑ (

χ2(C̃1C̃1)− 1
)
ρ(C̃1)ρ(C̃1)ρ(C̃1)

−(
χ3(C̃1C̃1C̃1)− 1

)
ρ(C̃1)ρ(C̃1)ρ(C̃1)

ũ(1234) = �̃(1234)−
∑

ũ()1ũ()3 −
∑

ũ()2ũ()2

−
∑

ũ()1ũ()1ũ()2 − ũ(1)ũ(2)ũ(3)ũ(4)

= · · · .

(4)

By taking advantage of the homomorphism, we shall consider the formal power series of

a new independent variable z corresponding to vectors �1 + �� and �1 + �̃
�. These formal power

series have a simple physical meaning of the grand partition functions of fermions, while the
mapping �# allows one to present a logarithm of the grand partition function ln(1 + �(z)) as
the sum of the contributions of the linked diagrams related to the cyclic permutations. The
independent complex variable z on a positive semiaxis has the physical meaning of activity.
Expressions pV/kBT = ln(1 + �(z)) and Nλ3/V = z∂ ln (1 + �) /∂z

(
λ2 = 2πh̄2β/m

)
determine the equation of state in a grand canonical ensemble and the dependence of a density
versus z, respectively. Excluding from these relations the variable z, it is possible to obtain
the equation of a state in the canonical ensemble.

For ideal fermions the logarithm of the grand partition function is the well known fermi
function with index 5

2 , which can be easily derived from the above obtained expressions:

�1 + �� = �#�u ⇒ 1 + �(z) = 1 +
∞∑
N=1

zN
�N

N !
= exp[u(z)] = exp

[ ∞∑
ν=1

zν
uν

ν!

]
. (5)
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For ideal fermions the cluster integrals can be calculated analytically:

uν =
∫

· · ·
∫
�

d(q)ν u(1 . . . ν) =
∫

· · ·
∫
�

d(q)ν ρ̄(Cν) = uν = (−1)ν+1(ν − 1)!
V

λ3ν3/2
.

As result the equation of state in a grand canonical ensemble is described by the fermi
function:

pV

kBT
= ln(1 + �(z)) = V

λ3

∞∑
ν=1

(−1)ν+1zν

ν5/2
. (6)

The analogous consideration in the ‘fixed-node approximation’ results in another equation
of state, i.e.

�1 + �̃
� = �# �̃u ⇒ 1 + �̃(z) = 1 +

∞∑
N=1

zN
�̃N

N !
= exp[ũ(z)] = exp

[ ∞∑
ν=1

zν
ũν

ν!

]
. (7)

The analytical calculations of cluster integrals, except ũ2, are now impossible due to the
presence of the characteristic functions. Now ũ2 depends on the choice of the ‘trial density
matrix’ and M , as the Trotter formula for the matrix elements of the density matrix is not
satisfied. Here:

ũν =
∫

· · ·
∫
�

d(q)ν ũ(1 . . . ν).

For the equation of state we have

p̃V

kBT
= ln

(
1 + �̃(z)

) =
∞∑
ν=1

zνũν

ν!
.

Thus, the inequality of vectors ũ �= �u results in the difference in the equations of state. Due
to the uniqueness of an analytic continuation this inequality is valid over the entire complex
plane of variable z,

pV/kBT = ln(1 + �(z)) �= ln
(
1 + �̃(z)

) = p̃V /kBT .

As follows from the presented derivation for ideal fermions, the difference between the
exact equation of state and the equation of state in the ‘fixed-node approximation’ is a pure
combinatorial property and does not depend on a modification of the domain of integration
by an appropriate choice of a ‘trial density matrix’. Excluding z from the equation of state
pV/kBT = ln(1 + �(z)) and the expression for density Nλ3/V = z ln (1 + �) /∂z, it is
possible to prove the analogous statement in the canonical ensemble. The incorrectness of the
cluster expansion in the ‘fixed-node approximation’ is also connected with the fact that some
terms related to the definite cluster integral can be proportional toV n, where n > 1, while other
terms are proportional to V , for example, the term

∑(
χ2(C̃1C̃1)−1

)
ρ(C̃1)ρ(C̃1)ρ(C̃1) in (4).

Let us note that ρ(C̃3) is going to zero, while χ2(C̃1C̃1) is going to one, when the characteristic
distances between trajectories of fermi particles are greater than the thermal wavelength.

6. Interacting fermions

The most reliable and complete results in the ‘fixed-node approximation’ are obtained for a
hydrogen plasma in [3, 4, 21], which is a mixture of classical (Ni protons) and Fermi particles
(Ne electrons,Ne = Ni). As is well known the thermodynamic properties of a quantum system
are fully determined by the related derivatives of partition function Z:

Z(Ne,Ni, V , β) = Q(Ne,Ni, β)

Ne!Ni!
with Q(Ne,Ni, β) =

∑
σ

∫
�

dq dr ρ(q, r, σ ;β). (8)
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Here q ≡ {q1, q2, . . . , qNi
} comprises the coordinates of the protons, and σ = {σ1, . . . , σNe

}
and r ≡ {r1, . . . , rNe

} are the electron spins and coordinates, respectively. The density matrix
ρ in equation (8) is represented in standard way by a path integral [11],

ρ(q, r, σ ;β) = 1

λ
3Ni

i λ
3Ne

2

∫
�

dr(1) · · · dr(n)

×
∑
P

(±1)κP ρ
(
q, r, r(1);2β) · · · ρ(

q, r(n), P̂ r(n+1);2β) S(σ, P̂ σ ′) (9)

where 2β ≡ β/(n + 1) and λ2
2 = 2πh̄22β/me. Furthermore, r(n+1) ≡ r and σ ′ = σ ,

i.e. the particles are represented by fermionic loops with the coordinates (beads) [r] ≡
[r, r(1), . . . , r(n), r]. The electron spin gives rise to the spin part of the density matrix S,
whereas exchange effects are accounted for by the permutation operator P̂ and the sum over
the permutations with parity κP .

In this paper, following [7, 25], we shall take into account all permutations and shall
integrate over the initial domain �. Following [7, 25, 26], we use a modified representation
of the high-temperature density matrices on the right-hand side of equation (9) which is
suitable for efficient direct fermionic PIMC simulations of plasmas. With the error of
order ε ∼ (βRy)2Neλ

3
e/V (n + 1) vanishing with growing numbers of beads we obtain the

approximation

∑
σ

ρ(q, r, σ ;β) = 1

λ
3Ni

i λ
3Ne

2

Ne∑
s=0

ρs(q, [r], β)

ρs(q, [r], β) = Cs
Ne

2Ne
e−βU(q,[r],β)

n∏
l=1

Ne∏
p=1

φlpp det |ψn,1
ab |s

U(q, [r], β) = Ui(q) +
n∑
l=0

Ue
l ([r], β) + Uei

l (q, [r], β)

n + 1

(10)

where Ui , Ue
l and Uei

l denote the sum of the binary interaction Kelbg potentials [27, 28] ;ab

between protons, between electron beads (‘l’), and between electron beads (‘l’) and protons,
respectively.

In equation (10), φlpp ≡ exp[−π |ξ (l)p |2] arises from the kinetic energy density matrix ρK

of the electron with indexp, and we introduced dimensionless distances ξ (1), . . . , ξ (n) between
neighbouring beads on the loop, then explicitly, [r] ≡ [r; r + λ2ξ(1); r + λ2(ξ (1) + ξ (2)); . . .].
The exchange matrix is given by

‖ψn,1
ab ‖s ≡ ‖e−(π/λ2

2)|(ra−rb)+yna |2‖s (11)

where yna = λ2
∑n

k=1 ξ
(k)
a . As a result of the spin summation, the matrix has the block structure

and carries a subscript s denoting the number of electrons having the same spin projection.
Furthermore, as an example, we present the equation of state, βp = ∂ lnQ/∂V =

[α/3V ∂ lnQ/∂α]α=1,

βpV

Ne + Ni

= 1 +
(3Q)−1

Ne + Ni

Ne∑
s=0

∫
dq dr dξ ρs(q, [r], β)

×
{

Ni∑
p<t

βe2

|qpt | −
Ne∑
p<t

|rpt |∂2β;
ee

∂|rpt | −
Ni∑
p=1

Ne∑
t=1

|xpt |∂2β;
ie

∂|xpt |
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−
n∑
l=1

[
Ne∑
p<t

Al
pt

∂2β;ee

∂|rlpt |
+

Ni∑
p=1

Ne∑
t=1

Bl
pt

∂2β;ie

∂|xlpt |

]
+

α

det |ψn,1
ab |s

∂ det |ψn,1
ab |s

∂α

}

with Al
pt = 〈rlpt |rpt 〉

|rlpt |
Bl
pt = 〈xlpt |xpt 〉

|xlpt |
. (12)

Here, ;ee = e2/|rpt |, α is a length scaling, α = L/L0, 〈· · · | · · ·〉 denotes the scalar product,
and qpt , rpt and xpt are differences of two coordinate vectors: qpt ≡ qp − qt , rpt ≡ rp − rt ,
xpt ≡ rp − qt , rlpt = rpt + ylpt , x

l
pt ≡ xpt + ylp and ylpt ≡ ylp − ylt . Other thermodynamic

quantities exhibit an analogous form1.
The important advantage of expression (12) is that the sum over all permutations has been

taken into account by the determinant, which can be calculated by the direct methods of linear
algebra. Moreover, in the limit when the number of beads is going to infinity n → ∞ all terms
in (12) are bounded, which improves the convergence of calculations using the Monte Carlo
method.

Expressions of the type (12) are convenient for calculations using a Monte Carlo method
as they allow one to use the effective procedure for calculations of the ratio of determinants of
the two-successor state of a Markov chain R = det |ψn,1

ab |new/ det |ψn,1
ab |old. In our calculations

the probability of acceptance of a new configuration of particles was proportional to an absolute
valueR, while the sign of the determinants was taken into account by the weight function of the
current configuration of particles. Moreover, effective calculations using formulae (12) require
fast calculations of derivatives of a determinant. All of these problems were effectively solved
due to calculations of an inverse exchange matrix. To generate a new configuration of particles
the elementary algorithm was used, in which one bead of the electronic trajectory or one of
the plasma particles (electron or proton) as whole were shifted. Due to these elementary
Monte Carlo steps the trivial modifications of an exchange matrix (modifications of only
one line or column) have been related, which increased the efficiency of the calculations.
Calculations were mainly performed for Ne = Np = 50 in a Monte Carlo cell, that allowed
one to take in the sum over s only one main term related to s = Ne/2. The test calculations were
performed for an ideal plasma of non-interacting classical protons and ideal fermi electrons as
the thermodynamic quantities of an ideal plasma has well known analytical expressions [5].
Good agreement with the analytical estimates was obtained [19, 20].

The results obtained here for a strongly coupled plasma were compared with analogous
results by Militzer and Cepereley [21] for hydrogen and deuterium plasma in the ‘fixed-
node approximation’. These results for pressure and energy at fixed density 2Ne/V =
2.5 × 1023 cm−3 are presented in table 1. At temperatures above 100 000 K, where the
degeneration parameter neλ3

e � 2 (λe is a thermal wavelength of an electron, λ2
e = 2πh̄2β/me)

the agreement is rather good. However, at temperatures lower than 100 000 K the difference
starts to rapidly grow, which is due to the increase of the exchange effects and the appearance
of atoms and molecules.

7. Conclusions

This work is devoted to the treatment of correlated proton–electron systems with degenerate
electrons. We compared our direct PIMC simulations with independent restricted PIMC
results of Militzer and Ceperley for one isochor corresponding to rs = 1.86 and temperatures

1 The approach [16] does not take into account the sign of the determinant (11), which results in essential errors for
strongly degenerate systems. We underline that, in contrast, our method rigorously takes into account the sign of the
determinant of each Monte Carlo configuration in the calculation of all thermodynamic averages.
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Table 1. Pressure p (Mbar) and energy E (2NRyd) of a dense plasma. Upper line, present work;
bottom line, the ‘fixed-node approximation’. Coupling parameter # = (4πne/3)1/3e2/kBT ,
2Ne/V = 2.5 × 1023 cm−3.

T (1000 K) nλ3
e # p (Mbar) E (2NRyd)

1000 0.10 0.169 67.74 ± 0.02 9.050 ± 0.005
66.86 ± 0.08 9.018 ± 0.015

500 0.29 0.339 32.85 ± 0.03 4.169 ± 0.003
32.13 ± 0.05 4.114 ± 0.007

250 0.83 0.679 15.37 ± 0.01 1.654 ± 0.005
14.91 ± 0.03 1.629 ± 0.007

125 2.33 1.350 6.98 ± 0.01 0.412 ± 0.005
6.66 ± 0.02 0.404 ± 0.004

62.5 6.58 2.701 3.07 ± 0.02 −0.248 ± 0.005
2.99 ± 0.04 −0.140 ± 0.007

31.25 18.48 5.376 2.20 ± 0.01 −2.377 ± 0.005
1.58 ± 0.07 −0.360 ± 0.010

15.625 52.26 10.75 1.46 ± 0.05 −2.937 ± 0.08
1.01 ± 0.05 −0.44 ± 0.007

10.000 103.6 16.96 1.39 ± 0.06 −2.52 ± 0.3
0.80 ± 0.08 −0.49 ± 0.02

in the range 10 000 K � T � 106 K, where # < 20 and neλ
3
e < 100. This region is

particularly complicated as here the pressure and temperature ionization occur and, therefore,
an accurate and consistent treatment of scattering and bound states is crucial. Results of the
direct path integral Monte Carlo simulation performed here have shown that the ‘fixed-node
approximation’ describes the thermodynamic properties of the strongly coupling fermions
rather well at ‘weak and moderate’ degeneracy. To analyse the reasons for the increasing
difference between the ‘fixed-node approximation’ and the results of the direct path integral
Monte Carlo simulations for highly degenerate fermions the correctness of the ‘fixed-node
approximation’ for ideal Fermi systems has been analysed by analytical methods. A rigorous
proof has been given to the fact that the exact Fermi function with index 5

2 describing the
logarithm of the grand partition function of ideal fermions cannot be reproduced in the ‘fixed-
node approximation’, which means that the ‘fixed-node approximation’ does not have the
correct limit of an ideal Fermi gas.
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